96,816 research outputs found

    Saturation of atomic transitions using sub-wavelength diameter tapered optical fibers in rubidium vapor

    Full text link
    We experimentally investigate ultralow-power saturation of the rubidium D2 transitions using a tapered optical fiber (TOF) suspended in a warm Rb vapor. A direct comparison of power-dependent absorption measurements for the TOF system with those obtained in a standard free-space vapor cell system highlights the differences in saturation behavior for the two systems. The effects of hyperfine pumping in the TOF system are found to be minimized due to the short atomic transit times through the highly confined evanescent optical mode guided by the TOF. The TOF system data is well-fit by a relatively simple empirical absorption model that indicates nanoWatt-level saturation powers.Comment: 6 pages, 6 figure

    Two-dimensional topological gravity and equivariant cohomology

    Full text link
    In this paper, we examine the analogy between topological string theory and equivariant cohomology. We also show that the equivariant cohomology of a topological conformal field theory carries a certain algebraic structure, which we call a gravity algebra. (Error on page 9 corrected: BRS current contains total derivatives.)Comment: 18 page

    A Tale of Two Theories: Quantum Griffiths Effects in Metallic Systems

    Full text link
    We show that two apparently contradictory theories on the existence of Griffiths-McCoy singularities in magnetic metallic systems [1,2] are in fact mathematically equivalent. We discuss the generic phase diagram of the problem and show that there is a non-universal crossover temperature range T* < T < W where power law behavior (Griffiths-McCoy behavior) is expect. For T<T* power law behavior ceases to exist due to the destruction of quantum effects generated by the dissipation in the metallic environment. We show that T* is an analogue of the Kondo temperature and is controlled by non-universal couplings.Comment: 4 pages, 2 figure

    Precision Measurement of the Spin-Dependent Asymmetry in the Threshold Region of ^3He(e, e')

    Get PDF
    We present the first precision measurement of the spin-dependent asymmetry in the threshold region of ^3He(e,e′) at Q^2 values of 0.1 and 0.2(GeV/c)^2. The agreement between the data and nonrelativistic Faddeev calculations which include both final-state interactions and meson-exchange current effects is very good at Q^2 = 0.1(GeV/c)^2, while a small discrepancy at Q^2 = 0.2(GeV/c)^2 is observed

    Magnetoelectric Jones Dichroism in Atoms

    Get PDF
    The authors suggest that atomic experiments measuring the interference between magnetic-dipole and electric-field-induced electric-dipole transition amplitudes provide a valuable system to study magnetoelectric Jones effects.Comment: 3 pages, 2 figure

    Flux Expulsion - Field Evolution in Neutron Stars

    Get PDF
    Models for the evolution of magnetic fields of neutron stars are constructed, assuming the field is embedded in the proton superconducting core of the star. The rate of expulsion of the magnetic flux out of the core, or equivalently the velocity of outward motion of flux-carrying proton-vortices is determined from a solution of the Magnus equation of motion for these vortices. A force due to the pinning interaction between the proton-vortices and the neutron-superfluid vortices is also taken into account in addition to the other more conventional forces acting on the proton-vortices. Alternative models for the field evolution are considered based on the different possibilities discussed for the effective values of the various forces. The coupled spin and magnetic evolution of single pulsars as well as those processed in low-mass binary systems are computed, for each of the models. The predicted lifetimes of active pulsars, field strengths of the very old neutron stars, and distribution of the magnetic fields versus orbital periods in low-mass binary pulsars are used to test the adopted field decay models. Contrary to the earlier claims, the buoyancy is argued to be the dominant driving cause of the flux expulsion, for the single as well as the binary neutron stars. However, the pinning is also found to play a crucial role which is necessary to account for the observed low field binary and millisecond pulsars.Comment: 23 pages, + 7 figures, accepted for publication in Ap

    Modulation of endoglin expression in islets of langerhans by VEGF reveals a novel regulator of islet endothelial cell function

    Get PDF
    BACKGROUND: Endoglin/CD105 is an auxiliary receptor for transforming growth factor-β with established roles in vascular remodelling. It has recently been shown that heterozygous endoglin deficiency in mice decreases insulin secretion in an animal model of obesity, highlighting a potential role for endoglin in the regulation of islet function. We have previously identified two different populations of endoglin expressing cells in human and mouse islets which are: (i) endothelial cells (ECs) and (ii) islet mesenchymal stromal cells. The contribution of islet EC endoglin expression to islet development and sensitivity to VEGF is unknown and is the focus of this study. RESULTS: In vitro culture of mouse islets with VEGF164 for 48 h increased endoglin mRNA levels above untreated controls but VEGF did not modulate VEGFR2, CD31 or CD34 mRNA expression or islet viability. Removal of EC-endoglin expression in vivo reduced islet EC area but had no apparent effect on islet size or architecture. CONCLUSION: EC-specific endoglin expression in islets is sensitive to VEGF and plays partial roles in driving islet vascular development, however such regulation appears to be distinct to mechanisms required to modulate islet viability and size
    corecore